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We investigate a Hamiltonian model of networks. The model is a mirror formulation of the XY model �hence
the name�—instead of letting the XY spins vary, keeping the coupling topology static, we keep the spins
conserved and sample different underlying networks. Our numerical simulations show complex scaling behav-
iors with various exponents as the system grows and temperature approaches zero, but no finite-temperature
universal critical behavior. The ground-state and low-order excitations for sparse, finite graphs are a frag-
mented set of isolated network clusters. Configurations of higher energy are typically more connected. The
connected networks of lowest energy are stretched out giving the network large average distances. For the
finite sizes we investigate, there are three regions—a low-energy regime of fragmented networks, an interme-
diate regime of stretched-out networks, and a high-energy regime of compact, disordered topologies. Scaling
up the system size, the borders between these regimes approach zero temperature algebraically, but different
network-structural quantities approach their T=0 values with different exponents. We argue this is a, perhaps
rare, example of a statistical-physics model where finite sizes show a more interesting behavior than the
thermodynamic limit.
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I. INTRODUCTION

The XY model is one of the classical and most versatile
spin models of statistical mechanics. It has been used in
many physical contexts, from superconductors �1� to lattice
gauge theory of quantum chromodynamics �2�, and further-
more applied to emergent phenomena in systems such as bird
flocks �3� and parallel discrete-time simulations �4�. In gen-
eral, the XY model describes a system of N pairwise inter-
acting units. Let the interaction be represented by a graph
G= �V ,E�, where V is the set of units, or vertices, and E is
the set of edges �pairs of coupled units�. Each unit i�V is
characterized by a real number �i called the spin of i. The
probability of a certain combination G and ��i�i�V is propor-
tional to exp�−H /T�, where the parameter T is called tem-
perature �parametrizing the disorder of the system� and H is
the �ferromagnetic� Hamiltonian

H = − �
�i,j��E

cos��i − � j� , �1�

a function that in physical systems represents the energy of a
configuration. �Note that, in our formalism, temperature and
energy are dimensionless.� From the symmetry of the cosine
function in Eq. �1�, we see that the values of �i only matter
modulo 2�. For this reason �i is commonly restricted to the
interval �0,2��.

Traditionally, studies of the XY model take G as a lattice
graph—a graph that can be drawn as a lattice �a discrete
subgroup spanning the vector space Rd, where d is the di-
mension, a natural number�—and considered fixed, while
��i�i�V is the object of study. �The most important result is
perhaps that for a two-dimensional lattice structure, the XY
model undergoes a peculiar phase transition, the Kosterlitz-
Thouless transition �5� between a disordered phase and a
phase with algebraic spin correlations.� Sometimes random
graph ensembles are used �6–8�, sometimes regular topolo-

gies that are not mathematical lattices �9�, but usually G is
static �the only exception we are aware of is Ref. �10�, where
the XY model is simulated on a graph being rewired without
any bias�. In this paper, we turn the situation around—we fix
��i�i�V and let G be only restricted by the number of vertices
N, the number of edges M, and that the graph is simple �i.e.,
that there are no multiple edges or self-edges�. The spins are,
like common practice when initializing the XY model for
Monte Carlo simulations, drawn with uniform probability.
Our model is a conceptual mirror image of the XY model—
hence we call it the YX model.

The YX model defines an ensemble of graphs and is thus
more related to the recent works on phenomenological mod-
els of complex networks �11–13�. Authors have studied gen-
eral classes of graphs sampled with a Boltzmann-like
probability—so-called exponential random graphs �14�, Mar-
kov graphs �15�, p-star models �16�, or statistical-mechanics
models �17� depending on the background of the author.
These models are used for sampling networks with some
prescribed structures; they are thus not microscopic, or
mechanistic, models and usually not analyzed in terms of
emergent properties in the N→� �“thermodynamic”� limit.
Our YX model is also related to hidden-variable models
�18–20� where some variables �in this case �i� assigned to
the vertices are affecting their position in the network. These
classes of models form a framework for modeling several
types of social networks. Assume at first that opinions �or
some other psychological or behavioral trait� of individuals
can be represented, or approximated, as a spin. �The model
can be generalized straightforwardly to traits represented as
binary �21� or multidimensional �22� variables.� Many forms
of social networks are shaped by a homophily between the
individuals—if the two individuals have similar traits, they
are more likely to be attached by an edge �23�. The third
assumption is that the social ties evolve faster than the opin-
ions �as in models of social segregation �24� or in some
limits of coevolution models of networks and opinions
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�25,26��. Our model is a simple model generating networks
whose growth is governed by these factors, with the tem-
perature parametrizing the strength of the homophily. We
will present and analyze it as an equilibrium statistical-
mechanics model, but it could be extended to a dynamic
model straightforwardly �easiest, perhaps, by modeling the
time evolution by METROPOLIS Monte Carlo sampling �27��.
Another application of our model is corporate network. Both
networks of firms are connected if they trade with each other
�28� and if their shares �or other financial instruments� are
correlated in time �29�. We have pointed out the versatility of
both the XY model and the related network models; we be-
lieve our proposed model have yet more applications. In the
rest of the paper, we will present the simulation scheme in
more details and analyze the size scaling of network-
structural quantities.

II. SIMULATIONS

We simulate our YX model using METROPOLIS Monte
Carlo sampling �27�. For one update step, we choose three
distinct vertices i, j, and k such that �i , j��E but �i ,k��E at
random. Let E� be E with �i , j� replaced by �i ,k�, then we
accept the change �replacing E by E�� if H�E��H�E�� or if
H�E��H�E��, with a probability proportional to

exp�H�E� − H�E��
T

	 . �2�

Let, furthermore, N such trial steps �where one edge is con-
sidered for rewiring� comprise one sweep.

The configuration space of our YX model is, as will be
discussed later, probably not very rugged. Still, to be on the
safe side, we use the exchange Monte Carlo method �30�
capable of, even for glassy systems with many local energy
minima, sampling the configuration space evenly in a limited
time. In exchange Monte Carlo, an even number of systems
is simulated in parallel for a sequence of temperatures. After
some intervals, with a probability dependent on the current
configuration, two systems at adjacent temperatures are ex-
changed so that one system moves up in temperature, the
other one down. In our simulations, we test for an exchange
every 105th sweep. We measure network quantities with the
same frequency as the tests for exchanges. Before we start
measuring, we run 107 sweeps for the system to reach equi-
librium �which is roughly 10 times longer than it takes for all
quantities for all sizes and temperatures to converge�. We use
100 measurements to calculate intermediate averages. This
procedure is then repeated for 100 random initial conditions
and the averages and standard errors of the intermediate av-
erages are the values we present below.

Unless otherwise stated, we will use M =2N �the edge
density of a two-dimensional square lattice�. We chose an
exponential set of 20 temperatures per system size selected
in a preliminary study to capture the most interesting region.

III. NUMERICAL RESULTS

A. Low-energy configurations

What is the ground-state configuration of the YX model?
First consider a simpler example—suppose N is a multiple of

3, N=M, and the angles ��i�i�V are evenly spread out over
the circle, i.e., �i=2�i /N. The minimal distance between any
pair of �i is the distance 2� /N between two adjacent vertices
along the circle. There are exact M such pairs, so the ground
state is E= ��1,2� , �2,3� , . . . , �N−1,N� , �N ,1��. Let f =M
+H measure how far from the lowest energy of a model,
where ��i�i�V is unconstrained, the configuration is �similar
to “frustration” in antiferromagnetic spin systems and spin
glasses�. For the state of circularly coupled edges, we have
�by Taylor expansion, cos �
1−�2 /2 for small �� f =M
−M cos�2� /N�
2M�2 /N2=2�2 /N for large N. Another
low-energy configuration would be to couple nearby vertices
into N /3 triangles—E= ��1,2� , �2,3� , �3,1� , . . . , �N−2,N
−1� , �N−1,N� , �N ,N−2��. f is in this case twice as large as
in the circular configuration. If we change the system above,
so �1=2� /N+�� �for some small perturbation 0����� /N�
and the rest is the same, then the f increases with ��

2 for the
circular configuration, while it decreases by 6�2�� /N−��

2 for
the configuration of isolated triangles. This example can be
fairly straightforwardly generalized to higher edge densities.
It suggests that fragmented configurations benefit from an
irregular distribution of angles, while circular distributions
should give the lowest energies at evenly distributed angles.
Since we sample N−� by uniform randomness, in the N→�
limit, the ground state should be a circulant �a graph where
vertices are connected to their nearest neighbors on a circle�.
The fragmented states can utilize the gaps in the distribution
of drawn �i values by omitting edges across such gaps. For
finite sizes, it could happen that the ground state is frag-
mented rather than a circulant. Indeed, this is what we see in
our simulations.

In Fig. 1, we show three low-energy configurations for a
small system size. The lowest energy state, with f =0.48, is
fragmented; the other two, with f =4.14 and 7.95, are more
elongated, closer to circulants. As we will see, for finite
sizes, fragmented states such as Fig. 1�a� have the lowest
energies while the circulants have larger entropies, making
configurations such as Figs. 1�b� and 1�c� dominant at higher
temperatures. In the large temperature limit, the networks are
Erdős-Rényi random graphs �11–13�.

B. Cluster sizes

Now we turn to the quantitative results. In Fig. 2, we plot
the relative fraction of the vertices not a part in the largest

(a) H = −199.52

π/2

0π

−π/2

(b) H = −195.86 (c) H = −192.05

FIG. 1. �Color online� Three low-energy configurations of our
YX model with 100 vertices.
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cluster, 1−s1. Compared to spin models such as the XY
model, the temperatures where the interesting behavior oc-
curs are much lower. The interesting behavior—the fragmen-
tation of the network—is best monitored in a logarithmic
temperature scale. The onset of fragmentation approaches
zero �as expected from the discussion above� as the system
size increases. In Fig. 2�b�, we show that for 	
=1.61
0.05 and �=0.22
0.03, we have

1 − s1 
 N−�F+�TN	� �3�

for a smooth function F and TN1.61�80. The onset of frag-
mentation thus moves to zero such as N−	. Note that this
scaling relation is itself not indicative of critical behavior in
the rescaled temperature TN	. We observe that the scaling
region is larger for smaller rather than larger system sizes,
which is also not supporting an emergent critical behavior in
s1.

An unexpected phenomenon in the YX model is that there
seems to be no universality in this size scaling of the
network-structural quantities. An example of this is seen in
Fig. 3 where we plot the temperature dependence of the rela-
tive size of the second-largest component s2. In many sys-
tems with a fragmentation phase transition, such as percola-
tion or network models of segregation �25,26�, s2 or s2 /s1
can be used to characterize the critical behavior. Also in our

case, s2 gives a strong signal of the low-temperature frag-
mentation. The heights of the peaks are quite independent of
system size. The location of the peak scales to zero such as
T�N−, =1.44
0.02 �not that this value is different from
	�. This means that the peak of s2 goes to zero slower than
the onset of fragmentation as seen in s1.

C. Diameter

The distance between i and j is the number of edges in the
shortest path between the two nodes. The largest distance in
a connected subgraph is the diameter D of that subgraph. If
the picture from Fig. 1 holds—that at intermediate tempera-
tures, the networks are dominated by stretched-out configu-
rations and at lower temperatures they are fragmented—then
the diameter of the largest connected component should have
a peak at intermediate temperatures. In Fig. 4�a�, we plot the
diameter as a function of temperature. Indeed there is a peak
moving to zero such as T�N−�, �=1.52
0.03, and increas-
ing in size as N−�, with �=−0.74
0.02. For the sizes we test,
the peak in D occurs at slightly higher temperatures than the
peak in s2. It also scales slightly faster than the s2 peak
toward zero. The fact that the peak of D scales sublinearly
reflects that the intermediate region is a mix of configura-
tions, not all stretched out such as Figs. 1�b� and 1�c�. This is
of course a fundamental aspect of Hamiltonian models—all
configurations have a finite chance of appearing at all tem-
peratures, but their frequencies vary with the temperature.
The fact that the peak value of D diverges with N supports
the picture of circulant ground states �in the N→� limit�.
The peak in Fig. 4�b� becomes sharper with larger system
sizes, meaning that the increase as TN� is lowered and gets
more dramatic. This observation is in concordance with a
T=0 phase transition. Our data do, however, not give a very
strong support for a critical scaling of D at the sizes we
investigate.

D. Density dependence

We perform most of our analyses for M /N=2, but will
briefly touch on how the scaling depends on the density of
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FIG. 2. �Color online� The fraction of vertices not part of the
largest connected cluster. In �a�, we show the raw data as a function
of temperature for four different system sizes. In �b�, we determine
the scaling exponents for low temperatures to 	=1.61
0.05 and
�=0.22
0.03. Standard errors are smaller than the symbol size
and omitted for clarity. Lines are guides for the eyes.
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FIG. 3. �Color online� The fraction of the second-largest cluster.
�a� displays the raw data of s2 as a function of temperature. In �b�,
we determine the scaling factor =1.44
0.02. Standard errors are
smaller than the symbol size and omitted for clarity. Lines are
guides for the eyes.
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edges. As our example, we choose the scaling analysis of the
diameter seen in Fig. 4�b�, but all the other scaling plots give
the same conclusion �see Fig. 5�. Both the networks with
M /N=2 /3 �a� and M /N=1 �b� have peaks of the diameter
scaling to zero with increasing sizes. The peak is less marked
in the sparser graphs in �a� which is natural since they are
closer to the fragmentation threshold at high temperatures
�M /N=1 /2�. The exponents are also N dependent, with �
decreasing with decreasing edge density and � increasing
�from more to less negative values� as the density becomes
larger. If the density is larger, e.g., M /N=4, the scaling we
plot, at least for the sizes we measure, breaks down �so that
there is no � such that D peaks at the same TN� and there is
no � such that the maximal TN� is the same for all N�.

E. Number of isolated subgraphs

Another feature characterizing the fragmentation is the
number of connected subgraphs g. In Fig. 6�a�, we plot this
quantity as a function of temperature. The fragmented and
unfragmented states are rather conspicuously separated and
in the low-temperature region g=�T−1/2 with the same con-
stant � for all system sizes. From Fig. 6�b�, we see that

g = N−�G�TN�� , �4�

where �=1.94
0.07, �=0.96
0.03, and G is the function
giving the shape seen in Fig. 6�b�. In traditional statistical
physics, for exactly solvable models, the scaling exponents
often have rational values. The g scaling is consistent with a
simple picture: if TN2�800, we have g�T−1/2; if TN2

�1600, we have g�N. To explain the value of �, we note
that the energy close to the ground-state energy is governed
by angular differences scaling such as 1 /N. Hence, N−2 �by
the leading, square term of f� gives a local energy scale,
which in analogy to van der Waals’ law of corresponding
states implies that T /N−2 is the fundamental quantity for the
fragmentation, i.e., that �=2. The large TN� scaling, g�N,
can be understood from the Erdős-Rényi model that is the
high-temperature limit of our YX model and has the same
scaling behavior. The low TN� scaling, g�T−1/2, is related to
the state with fragmented dense clusters. Assume that all

clusters are of similar sizes, then there are N /g vertices in
each cluster. The number of edges in a dense cluster scales
like �N /g�2 and thus the total number of edges like M
=g�N /g�2=N2 /g. Since we assume sparse graphs, M �N, the
number of clusters in such a graph scales like g�N. By the
same argument as above, that TN2 is a fundamental quantity,
we get g�T−1/2.

F. Correlations and radial structure

To get a more detailed statistical description of the con-
figurations at different temperatures, we investigate the ex-
pectation values � of the number of vertices at a distance r
from a vertex in Fig. 7. Panels �a� and �b� show the curves
below and at the maximum diameter. For these curves, the
radial density decreases exponentially, which, we believe,
only a fragmentation of the networks can explain. In the T
→� limit, the radial density curve looks peaked, as expected
in random graphs �31� and similar to observations in large
connected networks �32�.

In the XY model on two-dimensional lattices, as men-
tioned, one of the central observations is that the spin corre-
lations decay algebraically in the low-temperature phase as
opposed to an exponential decay for high temperatures. In
Fig. 8, we graph the correlation function

C�r� = �ei��i−�j��r� , �5�

where  · �r denotes an average over vertex pair separated by a
graph distance r. If all vertex pairs at a certain distance have
the same relative angular difference, C will be one. Compar-
ing the four panels, we note that �close to r=0� the correla-
tions decay slowest for the lowest temperatures. This is the
same behavior as in any classical spin model of statistical
physics. But in panels �b� and �c�, there is a second peak. We
understand this by analogy to the Erdős-Rényi model—if
2M �N, most vertices of this model are connected into a
“giant component,” while the rest of the graph consist of
small components. In our case, there are also disconnected
subgraphs for larger temperatures �i.e., when the graph has a
giant component�. The nongiant components are sparser than
the giant and should therefore be more volatile in structure.

0.4

0.6

0.8

1

1.2

1.4

10 100 103 104
TN

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 103 104
TN

D
N
ε

δδ
10.110.1

D
N
ε

(b)(a)

400
800

N = 1600

200

FIG. 5. �Color online� Figures corresponding to Fig. 4�b� for �a�
3N=2M and �b� N=M. The scaling exponents for �a� are deter-
mined to �=1.17
0.10 and �=−0.52
0.02; for �b� they are �
=1.25
0.10 and �=−0.61
0.02. Standard errors are smaller than
the symbol size and omitted for clarity. Lines are guides for the
eyes.

0.1

gNgN

10

100

g 0.05

100 103 10410−5 10−4 10−3 0.01 0.1
TNζT

50

(a) (b)

400

800

1600

N = 3200

FIG. 6. �Color online� �a� The number of fragments as a func-
tion of temperature. The solid line is proportional to T−1/2. �b�
shows the determination of the scaling exponents �=1.94
0.07
and �=0.96
0.03. Standard errors are smaller than the symbol
size and omitted for clarity.

HOLME, WU, AND MINNHAGEN PHYSICAL REVIEW E 80, 036120 �2009�

036120-4



This leads to lower correlations at distances close to the di-
ameter of the smaller components.

IV. SUMMARY AND DISCUSSION

We have investigated what we call the YX model—the XY
model where the connections, not the spins, are updated—
and found a complex pattern of size scaling. There are, for
the sizes we study, three regimes: one regime of fragmented
configurations dominating at low temperatures, an
intermediate-temperature regime dominated by stretched-out
networks, and a high-temperature, disordered region. The
different quantities we investigate, all capturing different as-
pects of the network structure, scale to zero with different
exponents. Thus the borders between the regimes also scale
to zero temperature. For example, we measure the diameter
�quantifying how elongated the largest connected component
is� and the size of the largest and second-largest components.
The peak in diameter scales to T=0 like �N−1.52
0.02 while
the peak of the size of the second-largest component scales
to T=0 like �N−1.44
0.02. This multiscaling implies that the
picture of three different regions will change as the sizes
increase beyond the ones we sample—e.g., the peak of the
diameter will, for very large sizes, not coincide with the peak
of the size of the second-largest component.

What conclusions can be drawn from our YX model as a
model of social networks? We have seen that for strong ho-
mophily �low temperature�, there is a state with stretched-out
networks. This regime is shrinking in temperature range as
the system size increases. The regime with stretched-out con-
figurations is a “large-world network” in the sense that its
distances scale faster than algebraically with N �12�. The fact
that this large-world regime vanishes as the system grows is
another explanation of the small-world network phenomenon
�33� that states that social networks often are very compact in

terms of path lengths �usually with distances scaling with the
logarithm, or slower, with N�. Furthermore, the different
scaling exponents we observe suggest that if the system
changes in size as it evolves, other network quantities �than
the sizes� will change.

In our YX model, the role of the N→� limit is, judging
from our observations, that regime of fragmented states dis-
appear. There are apparently no emergent singularities. On
the other hand, the finite-size scaling shows a complex be-
havior with different scaling exponents. We cannot rule out a
scenario our scaling parameters converge as N→� and there
is a unique parameter � such that all quantities signal the
elongated-configuration regime at a critical TN�. This, we
believe, would be the most likely scenario of a phase transi-
tion. But nothing in our results suggests this would happen.
On the other hand, the size scaling itself is highly complex.
Viewed in this way, we have a statistical-physics model
where the finite sizes are more interesting than the thermo-
dynamic limit. Moreover, since many real systems �espe-
cially in interdisciplinary physics� have restricted sizes, we
believe focusing on size scaling rather than extrapolating to
infinite sizes is a fruitful future direction for the analysis of
statistical-mechanics models.

Our model is disordered and formulated on a statistical-
mechanical framework. This forms a common ground with
spin-glass models and it would be natural to think that it
could be analyzed with the same framework. Spin-glass
models are often characterized by some order parameter—a
function usually involving sums over all vertices of F��i� for
some function F �typically a trigonometric function to some
power�. That approach does not work in our case since the
set of �i’s is fixed �so such functions would be constant�. One
could remedy this by measuring, e.g., the average magneti-
zation per connected component. By such a quantity, one can
monitor the fragmentation transition, but it does not contain
other information than s1, s2, and g. These are the arguments
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why we mostly focus on network structure of the generated
configurations. The only traditional spin-glass measure we
use is the correlation function of Fig. 8. The fact that it does
not follow any commonly observed functional form, such as
exponential or power law, also suggests that our YX model
needs to be analyzed with a different set of tools. On the
other hand, some of our observed phenomena have also been
observed in spin glasses. For example, the Heisenberg spin
glass with nearest-neighbor interaction in two dimensions
also has a T=0 transition where the Binder cumulants of spin
and chiral order scale to zero with N to the power of different
exponents �34�. In sum, we believe spin-glass theory may be

helpful to explain some features of our model, but radically
new theory is needed as well.
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